Gluten-Free Spiced Apple Walnut Scones with Maple Glaze
By Brittany Wydra

Recipe:
- 1 cup potato starch
- ⅔ cup tapioca flour
- ⅔ cup white long grain fancy rice (provided)
- 1 tsp baking soda
- 4 tsp baking powder
- 2 tsp xanthan gum
- ¼ cup sugar
- ½ tsp salt
- 1 tsp cardamom
- ¾ tsp cinnamon
- ¼ tsp cloves
- ¼ cup honey
- ⅔ cup melted coconut oil
- 2 eggs
- 1 tsp vanilla
- ⅛ cup milk
- 1 cup of chopped apples
- ¾ cup chopped walnuts

Maple glaze:
- 1 cup powdered sugar
- ⅓ cup pure maple syrup
- 2 tbsp melted coconut oil
- ¼ cup maple extract

Instructions:
1. Preheat the oven to 400 degrees and prepare a cookie sheet with a silicone baking mat.
2. In a medium sized bowl, mix the flours, baking soda, baking powder, xanthan gum, sugar, salt, and spices in a bowl. Then add the apples and walnuts and toss to coat.
3. In another bowl, beat the eggs with the coconut oil, milk, vanilla, and honey. Then combine the egg mixture with the dry ingredients until it forms a dough.
4. Place the dough onto a floured surface and use your hands to form a round, then cut the round into 8 wedges.
5. Place the wedges on the cookie sheet one inch apart and bake for 14-18 minutes.
6. To make the glaze, mix together the powdered sugar, maple syrup, coconut oil, and extract until combined and drizzle over the cooled scones.
Nutritional Analysis:

Serving size: 1 scone (84g)
Carbs: 55g
Protein: 5.8g
Fat: 17g
Calories: 390kcal

In an effort to comply with the recipe requirement that my baked good have a two week shelf life, I decided to research ways to extend the shelf life. I discovered an online resource for professional bakers called Bakerpedia. I learned methods to prevent mold from Dr. Lin Carson. I discovered that lowering the water activity will help to inhibit microorganism growth. In an effort to do that, I made sure to include hydrophilic ingredients such as sugar, salt, and honey, which can lower a food product's water activity. In addition to this, I made certain to practice good sanitation to prevent mold and stored them with the least amount of oxygen possible.